web analytics
 +91 (0)80 29766773
  Email: business@advancedstructures.in
  2B, 4th Phase, Bommasandra Industrial Area, Bangalore, Karnataka, India.
 +91 (0)80 29766773     Email: business@advancedstructures.in     2B, 4th Phase, Bommasandra Industrial Area, Bangalore, Karnataka, India.

Body in White (BIW) Benchmarking

Automotive industry is pushing limits to shorten their launch to launch cycle time & target very competitive cost of their products. With the increase in the strictness of the safety norms, NCAP ratings & customer needs, the challenge of reducing development cost and time has become more difficult.

If we look at the bill of material (BOM) for a passenger vehicle, BIW (Body in White) +DIW constitutes close to 40% of the total weight of the vehicle and has a significant role in impacting the overall cost and time of development. Refer the below mentioned graphs that show the weight distribution of all the subsystems of 4 Compact SUVs.

Fig. 1 Sub-System wise weight distribution chart for 4 vehicles
Fig. 2 Sub-system nomenclature

In order to support OEM clients in achieving their challenging targets, we targeted (Body In White) BIW & DIW benchmarking for detailed study. We have designed a range of custom services (Fig. 3) with respect to passenger car Body in White (BIW) based specifically on their recent requirements. We have divided the set of services in 3 parts in order to explain things in a detailed manner. This particular blog is Part-1(Fig. 3) & will pivot entirely around the CAD engineering specific services we offer.

Fig. 3 List of BIW & DIW specific engineering services

Part-1 CAD Engineering:

When we say CAD engineering, it includes all the categorized output or deliverable in digital format (CATIA/NX/Solid Edge/Solid Works) that can be readily accessible to design engineers during design process.
For instance, while designing passenger seat support bracket on Body in White (BIW), the designer needs to consider the following constraints:

Now, each of the constraint has further level of detail which guides the design of the bracket in a particular direction. Ideally designing the bracket meeting all these requirements is a very challenging in a limited period of time. If the engineer performs all the studies individually from scratch and tries to balance out on all the above fronts, the overall time required will be very high.

On the other hand, if an appropriate benchmark data in suitable format is readily available, detailed study time can be reduced and decision-making process can be expedited. For e.g. if the benchmark vehicle passes homologation and the seat assembly weight is in range, the thickness map of the benchmark bracket can be used as a reference to start the design. It will save many iterations for CAE.

Based on a recent study the availability of benchmark data at the right time while designing can reduce the overall time of design engineers by 23.7%.

As the data required by a Body in White (BIW) engineer while working on a new product model, a facelift model or a minor change model can vary from stage to stage, we provide the solution in 2 forms divided in further stages.

1. 3D CAD:

Using top-bottom approach detailed 3D data is generated for the entire Body in White (BIW) in following 2 ways.

Process-1:

Scan Body in White BIW  Generate rough surface  Disassemble Parts Scan All parts Generate rough surface data for all components Assemble all components.

Deliverable:
Non-Parametric rough surface data of Body in White (BIW) Assembly, DIW assembly and all components in.iges/.stp/.prt/.Catpart format. Vehicle co-ordinate system will be different for all the parts and assembly CAD files.

Few Uses:
1. Study of position, size and packaging of components with low accuracy.
2. Ergonomics reference study.
3. Dimension based homologation checks.
4. Rough Sectional Study

Fig 4. Sample Non-Parametric surface data

Process-2:

Assign reference vehicle co-ordinate system (VCS) Scan Body in White (BIW) Generate rough surface Disassemble Parts Hierarchy wise Scan All parts in assembled and non-assembled condition Generate rough surface data for all components Assemble all components Clean-Up CAD and generate CAE suitable CAD  Add weld information with exact quantity, size and location.

Deliverable:
Parametric solid 3D CAD data of Body in White (BIW) Assembly, DIW assembly and all components in.iges/.stp/.prt/.Catpart format. Hierarchy wise properly assembled all components in assembly with common VCS.

Few Uses:
1. Everything from Process-1 with higher accuracy.
2. Detailed thickness map of all the components.
3. Detailed CAE for crash, vibration and fatigue.
4. Tool development & Proto Building.
5. Features and holes positioning and mapping.
6. Detailed sections can be cut and studied.

Fig. 5 Sample CAD Data

Fig. 6 Sample CAE Data

2. 2D CAD:

For 2D CAD deliveries we need not disassemble Body in White (BIW) unless for a specific requirement and sections are cut from the Body in White (BIW) assembly at all critical locations. After that the cut pieces are scanned/traced and imported in the required CAD software for section modelling. CAD modelling of the section includes all thickness details (paint, anti-rust coating and panels) & exact profile.

For higher accuracy, the sections are cut using reciprocating saw, where speed, feed and depth of the cut is controlled and monitored. Also, during scanning/tracing & CAD making, dimensions are corelated with the physical section piece. In general, the accuracy of the section profile size is within 100 microns & thickness values within 10 microns.

Fig. 6 Sample Section 2D CAD

Fig. 6 shows just an example of a 1:1 scale 2D section in CAD format made using NX software, this section is from the A-Pillar region of the Body in White (BIW). Design engineer can use this section to study the A-Pillar obstruction (should be less than 6 degrees), section modulus for strength requirements, weld size and space availability, no of layers for spot weld and many more. Also, as this data will be available in the digital format, so she/he can verify & check shape/dimensions on the design software being used.

Major Challenges

The 2 major challenges that clients face while obtaining benchmarking data are getting the right data at the right time and accuracy of the same. At ASI we develop new methods and improve the efficiency of these methods over time in order to deliver accurate data at the right time. We have standard operation procedures (SOPs) for making 3D CAD, Scanning, Section profile cutting and CAE activity and these standards have been developed with various Japanese, Indian and European Automobile OEMs. Also, the tools and machines used are calibrated and highly accurate.

Part-2:

In the 2nd part of this blog we will discuss the Body in White (BIW) teardown process and BOM generation.

---
Pratik Shukla

Close Menu
Follow us on